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Optimal path in two and three dimensions
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We apply the Dijkstra algorithm to generate optimal paths between two given sites on a lattice representing
a disordered energy landscape. We study the geometrical and energetic scaling properties of the optimal path
where the energies are taken from a uniform distribution. Our numerical results for both two and three
dimensions suggest that the optimal path for random uniformly distributed energies is in the same universality
class as the directed polymers. We present physical realizations of polymers in a disordered energy landscape
for which this result is relevant.@S1063-651X~98!08212-9#

PACS number~s!: 61.43.Bn, 46.10.1z, 62.30.1d
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Recently, there has been much interest in the problem
finding the optimal path in a disordered energy landsca
The optimal path can be defined as follows. Conside
d-dimensional lattice, where each bond is assigned wit
random energy value taken from a given distribution. T
optimal path between two sites is defined as the path
which the sum of the energies is minimal. This problem is
relevance to various fields, such as spin glasses@1#, protein
folding @2#, paper rupture@3#, and the traveling salesma
problem@4#. Though much effort has been devoted to stud
ing this problem, a general solution is still lacking. The
exist two approaches developed recently to study this p
lem. Cieplaket al. @5# applied the max-flow algorithm for a
two-dimensional energy landscape. Another approach i
restrict the path to be directed, that is, the path cannot
backwards. This approach is the directed polymer prob
which has been extensively studied in the past years;
e.g., Refs.@6–8#.

In this paper we adapt theDijkstra algorithm from graph
theory @9# for generating the optimal path on a lattice wi
randomly distributed positive energies assigned to the bo
This algorithm enables us to generate the optimal path
tween any two sites on the lattice, not restricted to direc
paths. We study the geometrical and energetic propertie
the optimal paths ind52 and 3 dimensions in a random
uniform distribution of energies. We calculate the scali
exponents for the width and the energy fluctuations of
optimal path. We find that for bothd52 and 3 the exponent
are very close to those of directed polymers, suggesting
the nondirected optimal path~NDOP! is in the same univer-
sality class as the directed polymer~DP!. Our results are in
agreement with those found by Cieplaket al. @5# for the two-
dimensional case. This result indicates that, in the cas
uniformly distributed energies, NDOP’s are self-affine, a
overhangs do not play an important role in the geometry
NDOP’s.

Our results are relevant, for example, in the followi
polymer realizations:~i! Consider ad-dimensional energy
landscape in which there is a spherical regime of rando
distributed high energies, while outside this sphere the e
gies are zero or have very low values. Consider as we
polymer of lengthN, one of whose ends is attached to t
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center of the sphere while the other is free. The radius of
sphere isr !N @see Fig. 1~a!#. The section of the polyme
inside the sphere will reach the lowest energy path, whic
the optimal path studied here, i.e., with a self-affine str
ture.~ii ! Consider a polymer in ad-dimensional energy land
scape which is divided into alternating strips of disorder
low and high energies@see Fig 1~b!#. In the strips of high
energies the polymer is expected to behave like the opti
path.

The Dijkstra algorithm enables one to find the optim
path from a given source site to each site on ad-dimensional
lattice. During the execution of the algorithm, each site
the lattice belongs to one of three sets~see Fig. 2!: ~i! The
first set includes sites for which their optimal path to t
source site has already been found.~ii ! The second set in-
cludes sites that are relaxed at least once, but their opt
path to the source has not yet been determined. This set i
perimeter of the first set.~iii ! The third set includes all site
on the lattice which have not been visited yet.

The algorithm itself consists of two parts, initializatio
and the main loop. The main loop, in its turn, is composed
the search and the relaxation processes.

In the initialization part we prepare the lattice in the fo
lowing way. Each bond is assigned with a random ene
value taken from a given distribution. Each site is assign
an energy value of infinity. We pick up a certain source s

FIG. 1. Schematic illustrations of sections of a polymer hav
the structure of an optimal path.~a! Within the circle, energies are
distributed. Outside the circle, zero or very low energies are dist
uted.~b! Alternating strips of high and low distributed energies.
7642 © 1998 The American Physical Society
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and assign it an energy value of zero and insert it into
second set.

After that we enter the main loop. We perform the sea
among the sites from the second set, and find the one
the minimal energy value. Then we add it to the first set a
proceed to the relaxation process. This site is called
addedsite. The relaxation process deals with sites neighb
ing the added site that do not belong to the first set.

In the relaxation process we compare two values: the
ergy value of the neighboring site and the sum of t
values—the energy value of the added site and the en
value of the bond between these sites. If the value of the
is smaller, then~a! we assign it to the neighboring site;~b!
we connect the neighboring and the added site by a p
~thick bond in Fig. 2!; ~c! if the neighboring site belongs t
the second set, we break its previous connection to ano
site ~thick bond!; and ~d! if the neighboring site does no
belong to the second set, we insert it into the second set.
first four steps are demonstrated in Fig. 2. Normally,
main loop stops when the second set is empty; however,
might wish to break the loop earlier, e.g., at the mom
when the first set reaches the edge of the lattice in orde
avoid boundary effects.

Each site that belongs to the first set is connected to
source by a permanent path~thick bonds! that does not
change during the execution of the algorithm; so, if we s
the algorithm at any given time, the first set will still b
valid.

We simulate both DP’s and NDOP’s on a square lattice

FIG. 2. Illustration of the first four steps of the Dijkstra alg
rithm applied to a square lattice. Numbers along the bonds repre
the random energy assigned to them. Numbers inside circles re
sent the energies of sites, i.e., the total energy of the path con
ing this site to the source. Empty sites possess infinite energy
belong to the third set, thick circles belong to the first set, and
other circles belong to the second set. Note, e.g., that the
marked 6 in~c! was relaxed one more time and became 5 in~d!.
During this second relaxation we broke its previous connection
the site with energy 2, and connected it to the site with energy 3
each time step we identify the optimal path from each site in
first set to the source by going along the thick bonds.
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the following way. Letx andy be the horizontal and vertica
axes. We choose the origin to be the source site, and s
the optimal paths connecting it with all the sites on the li
between@0,t# and@ t,0# for different values oft. The gener-
alization to three dimensions is straightforward. The rand
energies assigned to bonds are taken from a uniform di
bution. We find that our results are independent of the d
tribution interval.

In Fig. 3 we compare a configuration of DP and NDOP
the same disordered energy landscape. It is seen that in
NDOP only very few overhangs exist. To test the effect
the overhangs we calculate the mean end-to-end distanR
of the global optimal path~thick line in Fig. 3! as a function
of its lengthl . The global optimal path is the minimal energ
path among all the paths with the same value oft. Our nu-
merical results clearly indicate the asymptotic relati
l;R, showing that the NDOP’s are self-affine@7#. We
should compare this result to the strong disorder limit, wh

FIG. 3. The sets of all directed~the upper one! and nondirected
~the lower one! optimal paths witht5300 obtained for the same
realization of quenched randomness in the lattice. The global o
mal path, which is the minimal energy path among all the pa
with the samet, is shown by a thick line. In this particular case th
directed and nondirected global optimal paths do not overlap
other cases they might overlap significantly, though the rest of
looks somewhat different.

TABLE I. Width and energy fluctuation exponents of DP an
NDOP in two and three dimensions. The exponents were der
from the slopes of the corresponding data points shown in Fig
The error bar was estimated from taking ten ensembles of 104 con-
figurations each ford53, and 500 configurations each ford53.

d52 d53
DP NDOP DP NDOP

j 0.6660.02 0.6760.02 0.6060.05 0.6360.05
z 0.3260.02 0.3260.02 0.1960.07 0.1860.07
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FIG. 4. The width and energy fluctuation as a function oft on a double logarithmic plot in~a! two and~b! three dimensions. Circles ar
used for directed polymers, and squares for nondirected optimal paths. For~a! 105 systems of linear size up tot5300 are used, and for~b!
5000 systems of linear size up tot575. The dashed lines are given as a guide to the eye, and have slopes equal to the exponents k
DP: j5

2
3 andz5

1
3 for d52 andj.0.62 andz.0.24 ford53 @6#. For all cases we used a uniform distribution of energies betweenE1

51 andE251000. We also tested other energy intervals and found the same results.
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the paths can be regarded as self-similar fractals, withl
;Rdopt, where dopt.1.22 in d52 and dopt.1.42 in d53
@10,11#.

In order to compare NDOP to DP we study several pr
erties, such as the roughness exponentj, the energy fluctua-
tion exponentz for two and three dimensions of DP an
NDOP. The above exponents are defined by the relat
W[^h2&1/2;tj and DE[^(E2^E&)2&1/2;tz. Hereh is the
transverse fluctuation of the global optimal path, which is
distance between its end point and the linex5y; E is the
energy of the global optimal path which is the sum of
bond energies along the path. The average is taken over
ferent realizations of randomness. Figure 4 shows the de
dence of the widthW and energy fluctuationDE of the DP
and NDOP ont in two and three dimensions. The points a
the data for both DP and NDOP, and the dashed lines re
a-

T
ro

.

-

ns

e

l
if-
n-

e-

sent the exponents of theDP. Our results indicate that
exponents for the NDOP are very close to those of DP~see
also Table I!.

Our results may be related to recent findings@12# that the
roughness exponent of the minimal energy of the dom
wall in the random Ising model and fracture interface are
same@3# in d52. In these cases, similar to our case,
though overhangs may occur, they do not play an import
role.

In summary, our results suggest that the optimal path
the case of uniformly distributed energies, for any ene
interval, is in a different universality class from the stron
disorder limit, but in the same universality class as direc
polymers. This result is relevant to several questions reg
ing the equilibrium state of polymers in different realizatio
of a disordered energy landscape.
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